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Abstract

Knowledge graphs (KGs) employ a wide range of semantic resources.
However, as is true of complex information systems, harmonizing rich
semantic resources requires effort and involves trade-offs. There are practical
reasons to start with modest semantics, and then incrementally add enhanced
semantic improvements. For this process there are a number of active
research projects that are developing light, incremental approaches, methods
and tools to support an expanding semantic KG space that has addressed
semantic alignment and harmonization. These projects include methods for
using existing semantic relations and entities harmonized across controlled
vocabularies, glossaries of definitions and ontologies. This article discusses
examples of incrementally improving the semantics of less formal schemas
that over time is helping to semantically unify richly interconnected
heterogeneous data using newly adopted and agreed upon methods.

Introduction

IT IS COMMON PRACTICE to engineer complex information systems using
iterative processes to provide incremental improvements (Darrin and
Devereux, 2017). This is reflected in principles of extreme programming
(XP) which is iterative and incremental and tries to address only a few
modeling issues during each phase of work (Choudhari and Suman, 2010;
& Dalalah, 2014). A form of extreme programming called the
eXtremeDesign (eXD) approach has been used for the development of
semantic resources such as knowledge graphs (KGs), ontology design
patterns (ODPs), and ontologies. Indeed the start small/iteratively improve
strategy of making incremental improvements, starting from some simple
semantics, was an implied part of the Semantic Web (SW) vision. It can be
seen in the semantic spectrum diagram (Figure 1) that starts with terms and
glossaries that have textual definitions and moves to a series of increasingly
semantically precise and expressive definitions of conceptual entities that
at the far end of the spectrum are represented in some formal language. This
original SW vision was that over time more data will be represented in
forms processable by computing machines to enable efficient and effective
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semantic exploration of the Web by bringing “structure to the meaningful
content of webpages, creating an environment where software agents can
roam across webpages in order to carry out sophisticated tasks for users”
(Hogan, 2020). In this vision incremental improvement choices should start
at the low end of the spectrum of semantic resources, which might be a
single word or phrase and its conceptual definition. At the high end we
arrive at a very expressive formal ontology with structured and
unambiguous ways of representing domain information. Formal languages
used to represent information are intended to specify processable
relationships between formally conceptualized data elements and be part of
the SW vision, and to employ precise URIs for relationships and properties.
Implied in the semantic spectrum model are “bottom-up” engineering
approaches leveraging more informal information. This can work, as shown
by KG efforts starting with relatively unstructured descriptions of a domain.
We can encode initial concepts from words and their implied relations
informally understood by domain experts. These concepts can then be
simply structured into a prototype model that identifies key concepts. From
a simple start increased semantic specificity removes ambiguity and affords
a growing degree of sharing and interoperability. The idea of incremental
development is attractive since it is a way to use the growing abundance of
information and semantic resources hosted on the web and available for
applications.

However, in light of the experience with a variety of semantic
resources since the original semantic web formulation, there are more than
simple, pointwise improvements to be made formalizing web data by say
expressing some definition in OWL. In addition to this there are
improvements to such related issues as coverage of relevant information,
factual or timely correctness, overall structures between items, and
methodological questions of how any of these changes may be done
efficiently and effectively. To address this I provide examples of both simple,
somewhat isolated semantic enhancements, and ones that are broader. I also
provide examples of some systematic methods, such as harmonization
across a suite of concepts. A challenge of an incremental approach is that
while simple concept definitions can serve as links between things on the
semantic spectrum, there may be numerous ways of defining a concept. The
word “forest” is used conversationally, but there is no universally
recognized precise definition. More than 800 definitions of forest are
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recognizable around the world, including off center relations to forest
nurseries and forest roads. To incrementally improve semantics as one
moves along the spectrum core relations such type and part-whole relations
can be used to reduce ambiguities in a conceptual space. Consistent with
this idea early ontological engineering practices aimed at reaching the
formal end of the semantic spectrum emphasized that ontology
development is necessarily an iterative process with regular revisions,
debugging, and progressive deepening. (Noy and McGuinness. 2001). This
general process is equally true for KG development.

Figure 1: Semantic Spectrum from Defined Terms to Formally Defined
Concepts based on (MA, 2021)

Data abundance provides opportunistic construction of products like
KGs by leveraging the large amount of available data, including semantic
resources along the semantic spectrum. However, real-world KGs are
complex. The data, while vast, includes informal types, is usually
incomplete, and is not harmonized. Thus, early phases of work with raw
data do not easily reflect a full reality-based model. There are risks to
assume that one can develop a fully validated domain-spanning semantic
model all at once. As noted by Elsaleh et al. (2019), “semantics add further
overhead to data delivery, and the processing time to annotate the data with
the model can increase the latency and complexity in publishing and
querying the annotated data.”

For these reasons and others, in practice, most KG projects are
largely data driven from the bottom and do not build or use a full and
semantically rich, domain ontology. Instead, projects search for low-
hanging fruit and tractable semantic resources, such as a centralized, crowd-
sourced approach using Wikidata as the foundation or using generalized
vocabularies. Still another approach is to leverage a slimmed down
ontology (Heller et al., 2018). Work often starts with what are called
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lightweight ontologies (Giunchiglia and Zaihrayeu, 2007). These aid
developers (and users) by allowing relatively fast annotation of data with
information from glossaries. These are midway along the expressiveness
dimension of the semantic spectrum. Lightweight ontologies and related
models are largely descriptive and include groups of concepts, concept
taxonomies showing sub-classes, and simple, conceptual relationships
between concepts. Lightweight ontologies have only a modest number of
axioms and relations, and may focus on taxonomic and structuring relations.
Heavier or richer ontologies include axioms and constraints beyond
hierarchical ones to clarify the intended meaning of the terms involved in a
domain. There are a variety of trade-offs between light and heavy models.
Obviously, richer axioms done well are closer to domain reality. But a
benefit justifying a lightweight approach is to save query processing time
when complex relations are involved.

A big advantage of starting with low-hanging resources and
lightweight semantics is the desire to make rapid progress. So we typically
see that KGs may be implemented using data with limited semantics, such
as the use of RDF triples or property graphs with no schema. As a result
projects may have masses of data with no consensus on core semantics or
what models are reflected in the data. Even in a structured form like RDF,
data may be developed from different vocabularies and different
perspectives on the data and largely be stored in “dispersed forms in a
number of autonomous information silos” (Guizzardi, 2020). As Heflin and
James Hendler (2000) put the resulting challenge of integration: “To
achieve semantic interoperability systems must be able to exchange data in
such a way that the precise meaning of the data is readily accessible and the
data itself can be translated by any system into a form that it understands.”
We need some degree of deep knowledge to support domain reasoning to
fulfill this SW vision.

FAIR Guiding Principles

A step towards sound and incremental data management practices
regarding new knowledge generation and discovery by individuals and
organizations was taken in 2016, with the publication of the ‘Findability,
Accessibility, Interoperability, and Reuse’ (FAIR) Guiding Principles for
scientific data management and stewardship (Wilkinson et al., 2016). The
FAIR principles include enhanced semantics for machine-actionability (i.e.,
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the capacity of computational systems to find, access, interoperate, and
reuse data). The "I" in FAIR is concerned with putting machine-readable
knowledge on the web, and incremental semantic technology helps to
achieve this by developing comprehensible structure and context that makes
data easier to reuse and integrate with other data.

The Internet of Things as an example

The Internet of Things (IoT) is one area of interest to KG
development that does not yet have a consensus on top-down models or
ontologies. This reflects the more general fact that unitary efforts to develop
top-level ontologies or even broad and deep domain ontologies have had
problems (De, Suparna, Zhou, and Moessner, 2017). Because of the breadth
of entities involved in IoT, formal agreements on semantics tend to be
avoided to make KG construction quicker. Instead, as noted before, a
bottom-up process is often the initial guide. This leverages analysis of
implied meanings, as understood by domain experts and/or data analysts,
found in structured and linked data. This makes sense since the choice of
semantic simplicity avoids complex metadata documentation and
encourages faster adoption by end users who can easily grasp the concepts.
However, ignoring top-down semantics can sacrifice system quality,
making it difficult to interpret query results against intended or reliable
agreed upon meaning. For example, without an effective naming authority
for Web data, it can happen that different KGs refer to the same thing by
different names, and the same names may have quite different meanings
(Alexopoulos, 2020). This problem is well known from earlier work on
conceptual models of data (Hull, 1996). A modeling example is the
difference between a glossary for cars versus the more general one of
automotive vehicles, which would contain trucks. Manually resolving these
differences can be challenging and involve many trade-offs. Creating a
semantic data model is a labor-intensive process, and requires a sound
understanding of the selected domains within a KG’s scope along with the
relevant ontologies.

Data Heterogeneity Tradeoffs and Challenges

For many reasons, KG building tends to fall back on some idea of
incrementally adding semantics as part of later stages of iterative
development. However, there are several challenges for improving KG
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semantics, such as data heterogeneity. Barriers exist to continued,
incremental progress, such as finding an easy, effective way to create richer
vocabularies, remove ambiguity, and integrate richer semantics into
schemas with appropriate constraints and relations. The struggle starts with
the problem of conceptual heterogeneity, such as contradictory structures
and/or levels in different taxonomies or other lightweight semantic
resources. Groups crafting definitions (or building other semantic resources
like conceptual models) have varying experience and ability and use
different methods. This situation can innocently result in unintended
heterogeneity. One may use some knowledge engineering to craft
semantically harmonized definitions, but this can be time-consuming, error-
prone, and a tedious process. Domain experts can quickly lose interest in
such work. Indeed, different domain experts may use varied implicit
background knowledge to understand, and later define, concepts with the
same name. Experts and knowledge engineers may locate the same targeted
concept differently within some conceptual space or hierarchy. In turn, the
use of significantly different distinguishing concepts creates
conceptualization mismatch in a KG. As a result, the KG may misalign data
based on their different underlying source models, even when attributed to
hardworking domain experts.

Incremental improvements may also be challenged by the trade-off
between coverage and correctness. Coverage is concerned with whether the
KG has all the required or desired information. Effectively the answer is
always no, in the sense that domain knowledge is indefinitely extensible,
and development teams are motivated to look for new ways to provide value
to domain users. And it is also true that new sources of data, information
and organizational schemes, like language, emerge over time. However, as
the coverage increases, the likelihood of a conflict or contradiction also
increases. Approaches to the trade-off between coverage and correctness
may be addressed differently in particular KGs when difference in the
coverage occur and new data sources are introduced. KGs may also need to
extend their semantics to describe different realms or regions of the world
at the same level of detail and/or from a different perspective. Similarly,
differences in granularity occur when we have the same perspective, but at
different levels of detail. This occurs, for example, with geographic maps
of different scales. Difference in perspective (difference in scope) occurs
when two data sources describe the same region of the world, at the same
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level of detail, but from different perspectives (e.g., a political map vs. a
geological map). For all these reasons revisions and modifications in a KG
lifecycle may result in ambiguity, redundancy, and modeling
inconsistencies that need to be addressed over time.

In general, achieving a base level of interoperable results given the
heterogeneity among different information systems is difficult (Maciel,
2017). More than a simple change of representation is needed as part of data
integration and harmonization. The simple fact is that in order to achieve a
useful degree of interoperability between datasets, either the datasets need
to use the same (set of) ontologies, or the ontologies need to be aligned and
mapped. How to develop efficient alignment and mapping is one of the
areas of improvement emerging from KG research.

Examples of Incremental Improvements

To give the flavor of work that addresses some of the challenges KG
and related efforts face, six types of incremental semantics are briefly
illustrated, starting with the simple case of improving and harmonizing
identifier systems. This seems a relatively simple problem to address, but
still exists and is a major concern of the FAIR principles. We then consider
four specific ontologies. This section ends with a discussion of automated
techniques.

Clarifying Identifier Systems

The wide range of semantic resources often use different identifier
systems. For example, the W3C Organization Ontology (ORG) expresses
information about organizations, i.e., companies and institutions, including
governmental organizations. The focus is on organizational structure (e.g.,
sub-organizations and classification of these), along with reporting
structures (roles) and facility locations (Reynolds, 2014). In contrast, the e-
Government Core Vocabularies that were developed in order to provide a
minimum level of semantic interoperability for e-Government systems use
a different system that covers overlapping concepts with a focus on public
services, public organizations, and public services (European Union, 2015;
Gerontas. 2020). There are many other examples, and so developing a
unified semantic expression of identified semantic resources becomes a
more difficult task as more resources are assembled into a KG. In the
business domain, the euBusinessGraph ontology represents an example of
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using a rather specific lightweight semantic model approach to standardize
identifier systems within their area of interest. The euBusinessGraph
ontology starts by systematically combining and reusing termed concepts
from existing ontologies, such as the previously mentioned EU Core Vocabs:
W3C Org, as well as others (Roman, 2021). The result is a revised model
integrating several semantic resources, such as vocabularies, into a more
expressive and detailed model that includes extensions to “application
profile, RDF Shapes and data provider mapping documentation.” (Roman
et al., 2021).

Extensions and Improvements to FOAF

Refinement and extensions of semantic resources to handle
expanded requirements are among the typical increments needed to
integrate semantic resources. An example of incremental improvement can
be seen in the movement from the early conceptualization of Friend of a
Friend (FOAF) (Brickley & Miller, 2018). FOAF is a widely used
lightweight social network “core vocabulary”, but it has vocabulary areas
with little or no adequate semantic coverage. This combination becomes a
problem as the vocabulary keeps being reused without improvement. The
answer is to avoid slavish reuse and to make incremental extensions.
Examples of this makes the FOAF case illustrative of incremental
development. There are now numerous refinements and extensions for
particular areas. This process may start with expansions of the subclasses
and with deepening the classes found in early versions of FOAF.
Refinements may take the form of defining inclusions between classes and
relations, and/or of refining features and restrictions of the relations. A
vocabulary example is the extension of the definition of “landform” as “a
feature on the Earth's surface that is part of the terrain.” to including
formative processes (e.g., volcanic process or tectonic movements) or
constituents such as magma as part of a volcano system.

A useful example of a social network extension to meet expanded
requirements comes from considering new virtual, social relations (El
Kassiri and Belouadha, 2017). These include worked out examples covering
extensions to social networks in a variety of behavioral-and health-related
research areas. These capture more of the rich interactions of social
networks (Amit et al., 2020). Enriching FOAF in this way uses the best
practice of building on the existing (FOAF) model and illustrates the
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practice of incorporating ideas from other ontologies. To do this one can
reuse one or more lightweight ontologies, adding extra properties and
classes as needed. In terms of ontological engineering practice, this reflects
adding new competency questions (i.e., the questions a knowledge base can
answer) which are not addressed in a current version of a KG or its
underlying ontology.

Another FOAF extension example uses ontological imports from the
Food and Agriculture Organization’s geopolitical ontology (Kim and
Viollier 2013). The result is a richer artifact, called FOAF+. It can be used
to describe new types of social ties, interactions and new entity features or
attributes not included in the earlier, base and lightweight FOAF. Another
aspect of incremental improvement is the quality of conceptual, not just
representational, expressiveness. Unlike the early idea of the semantic
spectrum, one is not just increasing the expressive language around a
concept; one has a quality meaning that is prior to the expression of the
knowledge. Otherwise, we face, adapting an old expression, the situation of
“imperfect modeling information in; imperfect understanding out.”

Schema.org and Bioschema

Annotating data for KGs using a lightweight, standard schema is
another situation that illustrates semantic enhancement. Schemas represent
a target for mapping and are one way to support improved alignments. An
example comes from the use of a master data hub like the Schema.org
markup vocabulary. Schema.org reflects an effort to standardize lightweight,
annotating vocabularies to reduce data heterogeneity, as well as to ensure
that websites are more uniformly indexable for search engines and other
web services (Guha et al., 2016). As previously discussed, KGs typically
start with the low-hanging fruit available from annotations that can be
extracted from websites. An incremental improvement is to standardize
these by verifying them against the relevant domain part of the Schema.org
vocabulary.

Extensions of Schema.org for the bio-science realm illustrate some
of the progress. For example, extensions to Schema.org as part of
Bioschema work (Franck. 2018) allows searching for and finding data about
specific biological entities (e.g., particular genes, proteins, and taxa). This
enhancement uses entity profiles. An example of this is the idea of
TaxonName. This is used to specifically annotate taxonomic name registries.
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Guidelines for use are provided that describe how to leverage existing
vocabularies such as Darwin Core or Wikidata. Bioschema can be used to
improve biology oriented KGs by enabling semantic cross-linking between
any KG that extracts data from Bioschema marked-up websites.

The Bioschema enhancement also follows FAIR principles. It
includes semantics to help discover data repositories storing experimental
results, along with the storage location of specific biological samples. To
support this, relevant controlled vocabulary terms drawn from existing
ontologies have been imported. A cited example is the protein profile which
requires a unique identifier, and recommends listing transcribed genes and
associated diseases. For proteins Bioschema points to recommended terms
from the Protein Ontology and Semantic Science Integrated Ontology.

As an incremental improvement to Schema.org, Bioschema
specifications go beyond simply adding new types and properties for
biological entities. It includes more structure, providing constraints on the
Schema.org model. These constraints capture and require things like
minimal information properties agreed by the bio-community. These fall
into categories of mandatory (M), recommended (R), or optional (O).
Another enhancement is that the cardinality/occurrences of properties have
been added.

Success with semantic enrichment such as Schema.org generates
support from tools to automate some of the activity. As an example, a
semantic validator has been developed to help ensure the syntactic
correctness and completeness of the annotations from a Schema.org
perspective (Panasiuk et al., 2019).

Sensor, Observation, Sample, and Actuator ontology (SOSA) an Ex-
ample of a Design Pattern Approach

SOSA is a lightweight but a general-purpose pattern-based
specification for modeling the interaction between the entities involved in
the acts of observation, actuation (actions triggered by observations), and
sampling. As an incremental example, SOSA is the result of rethinking the
W3C-XG Semantic Sensor Network (SSN) ontology. It reflects changes in
scope and target audience, technical developments, as well as lessons
learned over the past years. SOSA, as well as its base SSN, are examples of
an incremental approach to semantics using ontology design patterns (ODPs)
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(Gangemi, 2005). ODPs help address the reuse problem of complex
semantic resources, such as an ontology like DOLCE, where only certain
“useful pieces" of a comprehensive (foundational) ontology, may be of
interest to a KG. This is based on the observation that the cost of reuse from
a large, but shallow ontology, may be a higher cost on resources than
developing from scratch a scoped ontology for particular purposes. ODPs
can serve as a step towards more structured and semantically rich metadata,
even to extend something like Schema.org markups. ODPs reflect the
understanding that often to practically solve semantic problems, it is
productive to agree on minimal requirements imposed on a relevant family
of concepts (Kuhn, W. 2009). ODPs (aka microtheories) represent small,
well engineered, coherent, minimally constrained schemas. Light, general
ontology patterns function as a modular consistent core that can serve as a
starter set from which more varied and detailed models or, as needed, larger
ontologies can be built. In effect ODPs serve as an initial constraining
network of “concepts” within a common framework using vocabularies
allowing people to incrementally extend and align them for various
purposes. The overall impact to support some degree of common
interoperability, including easy data sharing via a KG using one or more
ODPs.

The eXD methodology, mentioned earlier, uses an agile approach to
ontology engineering and focuses on the reuse of ODPs (Presutti et al.,
2009). Among ODP best practice qualities that enable incremental
semantics are explicit documentation of design rationales, and the use of
best re-engineering practices to facilitate reuse. It is also worth noting that
a KG design around a family of ODPs can provide a very concise but
informative view of the overall content of a KG (Asprino et al., 2021).

ODPs like SOSA support a progression from the light semantics of
something like FOAF to heavier semantics that helps avoid legacy and silo
building problems (Janowicz et al., 2019). As an example of how ODPs
afford easy improvement, SOSAuses axiomatization but does not make any
formal restrictions on how to use observable properties. This allows for
alternative observational models. Observed features of interest, for example,
are not restricted to objects like roads. They also can include events such as
rush hour traffic. As with other semantic products, over time there has been
a recognition for refinement in ODPs. In the case of SSN, which evolved
into SOSA, this process included recognizing the need for a central concept
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of observational sampling over time. Another recognized improvement was
that observations may not be carried out on the entire feature, but on
samples of a feature and/or as part of sensing some spatiotemporal region
that serves as a proxy for a feature (Taylor et al., 2019).

Enhancing Earth Sciences Ontolgoies: adding EnvO axioms to
SWEET

A fifth illustration of incremental semantic improvement comes
from experiences with broad ontologies like the Semantic Web for Earth
and Environmental Terminology (SWEET). SWEET is a lightweight
ontology with broad coverage, but sporadic definitions that historically
served as a starting point for concepts within the Earth Sciences
(DiGiuseppe, Pouchard, and Noy. 2014). Often, richer semantics were
added for particular domains. A more semantically richer, but topically
overlapping, ontology is EnvO, the Environmental Ontology. EnvO
includes semantically controlled descriptions of environmental entities and
rich axioms. It thus serves as a quality semantic resource for research and
is widely cited. For example, the Darwin Core glossary uses EnvO for
habitat descriptions. Over its life, EnvO has been continually extended
beyond its initial goal to represent biomes, environmental features, and
environmental materials pertinent to genomic and microbiome-related
investigations. The need for environmental semantics is common to a
multitude of fields, and thus EnvO's use has steadily grown since its initial
description. Its scope has expanded, been enhanced, and generalized, so the
ontology can support its increasingly diverse applications, as shown by the
range of updates in a recent release (EnvO, 2021). One notable example of
a recent extension is as a semantic resource for Cryosphere concepts (Berg-
Cross and Vardemann, 2020). Work on a common Cryosphere model to be
added to EnvO actually started with a 14-hour hackathon on glaciers
(Glacier Hackathon, 2019). The session leveraged and harmonized a
focused portion of a rich collection of definitions developed by the World
Meteorological Organization’s (WMO) Global Cryosphere Watch (GCW).
This GCWwork expanded on prior work on sea ice ontologies (Duerr et al.,
2015) and had recently collected some 27 cryospheric glossaries containing
a total of 4147 terms. Importantly, semantic analysis showed that only 2249
were unique and terms could be organized into useful categories; namely,
those
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• that were well-formed and documented and not problematic from a
semantic standpoint,

• where multiple definitions could be coalesced into a single defini-
tion, and

• where the terminology was inconsistent and therefore problematic
from a semantic standpoint, and where community resolution was
needed to either agree on a definition or to split the terms up into
separate entities, etc.

The subsequent hackathon’s objective was to develop a refined con-
ceptual model organizing relevant terms into glacial object types, features,
composition (e.g., frozen water matter) and processes. The overall hacka-
thon experience of building a conceptual model with some ODP structures
was successful enough for participants to seek a way to continue this work
on a regular basis. A goal was to use this as a way of aligning and enhancing
the SWEET and EnvO ontologies. This was an important test case because
both ontologies were independently developed, but both ontologies contain
many of the same important semantic resources of the environmental and
earth science (ESS) domain. Discussions had been underway about how to
align portions of them. A domain like the cryosphere with some harmoni-
zation efforts completed presented a good test area for ontology alignment
and enrichment. To support this, a Semantics Harmonization cluster was
formed with the Earth Science Information Partners (ESIP) Semantic Tech-
nology Group to develop a harmonized cryospheric glossary leveraging cry-
ospheric terms in both Envo and SWEET.

As a start, GCW’s harmonized definitions were used to add content to
the EnvO while simultaneously mapping the results to existing classes in
the SWEET Ontology. EnvO’s ontology is more richly axiomatized than
SWEET since it is part of the Open Biological and Biomedical Ontologies
(OBO) Library, and employs recommended practices and technologies for
developing expressive and interoperable ontologies in OWL. As ontologies
like EnvO and SWEET are enhanced, they in turn can support their domains
for KG development.

Below is an example of a semantic update to the EnvO description and
axioms for the concept of “ice shelf”:

• An ice shelf is an ice mass attached to the coast
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• An ice shelf is at least 2 meters in thickness
• An ice shelf forms where a glacier or ice mass flows down to a
coastline and onto the ocean surface and

• An ice shelf grows by annual snow accumulation or by the
seaward extension of land glaciers.

Some corresponding Envo Axioms are:

• partially surrounded by some atmosphere
• attached to some sea coast
• has quality some buoyancy
• adjacent to some marine water body
• formed as result of some snowfall
• a land ice mass
• formed as result of some mass ice flow

As a whole, SWEET remains less axiomatized than EnvO, but has
been updated to use the same harmonized definition that ENVO does. And
to support ontology alignment, axioms have been added to SWEET
asserting such things as a “closeMatch to EnvO Ice shelf”. This allows
cross-fertilization with SWEET’s long-standing usage in the Earth and
environment domain, and offers a pathway for its incremental development.

Relations like “closeMatch” expressed in RDF are part of the
lightweight SKOS standard. They provide only modest expressivity for
mappings such as mentioned above to relate terms in EnvO and SWEET. A
popular formalism for relating terms is SKOS, which uses RDF to provide
some formalization of various types of controlled vocabulary. These include
classification schemes, subject heading lists, and taxonomies. This promises
some degree of automation for finding relevant terms and for aligning
similar terms. But using SKOS to define vocabularies and term relations
can lead to problems down the road. Since it has semantic limitations, some
of its modeling is suggestive, rather than constraining enough to reduce
ambiguity. For example, SKOS doesn’t provide axioms to explain the
similarity and work can struggle to upgrade the SKOS model into a more
expressive language like OWL. There is no straightforward path between
the two languages without conceptual analysis (Jupp, Bechhofer, and
Stevens, 2008). Additional incremental improvements can address this
using knowledge engineering practices.
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Ontology and Knowledge Learning

The previously noted enormous increase in data, both structured and
unstructured, available on the web and in data silos, represents a great op-
portunity for KG building efforts. But there are known difficulties with
some associated data management tasks that have traditionally been done
with some degree of handcrafting. However, handcrafting big ontologies
and other semantic resources like KGs remains a time-consuming, difficult
task. This fact ensures that automated or semi-automated acquisition of on-
tology from text and structured data remains an active research area with a
big payoff potential for populating KGs or building ontologies. Semantic
resources like categories of nouns and taxonomies can be learned from texts
and even enhanced using automation and machine learning (ML). One way
to do this is to extract knowledge from resources on the low end of the se-
mantic spectrum. This idea has been understood for a while (Faure,
Nédellec, &, Rouveirol,1998), and efforts have been used dividing the
learning process and supporting automation into four different phases: ex-
tract concepts, prune, refine, and import or reuse concepts (Mädche, 2005).
But the variability of free text can cause a high error rate if automation is
based on shallow natural language processing.

While progress has been slow, there have been signs of progress.
Inspired by the SW idea of a spectrum of resources. A variety of products
can be learned by using a combination of association rules, formal concept
analysis, and clustering. Some outputs relevant to KGs focusing on ontolo-
gies are shown in Figure 2.

The layer cake model in Figure 2 shows a multistage learning pro-
cess, starting with terms that are the most basic building block for
knowledge learning. Extracted terms can be used to feed into a higher stage
using glossaries and thesauri that come with descriptions, definitions and
some relations from verb phrases. This process, in turn, provides a basis to
define concepts and for generating hierarchies. Along the way, nouns and
noun phrases that have the same relations become synonym candidates. All
of this helps build a KG information structure that can address questions
like “What are the characterizing words, nouns, verbs, and adjectives typi-
cally used in this domain?” Ontology learning methods thus provide a way,
noisy as it is, to start defining domain knowledge for a KG given a domain
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glossary, and it can be more than a simple translation (Bozzato, Ferrari, and
Trombetta, 2008).

Figure 2: Ontology Learning Layer Cake Hierarchy based on (Buitelaar,
Cimiano, and Magnini, 2005

Still, the typical automatically learned semantic resources need hu-
mans in the loop. Auto-generated products need to be inspected, validated
and modified by domain experts and knowledge engineers before they can
be a basis for being accepted, formalized in an ontology, or applied by an
application like a KG. Currently, the practical emphasis of such efforts is
not to create a final, perfect ontology for a particular domain, but to create
reasonable vocabularies first and then incrementally create schema patterns
with domain terms and definitions that are good enough (i.e., constrained
and defined enough) for people to start using them for publishing data on
the Web. A goal is also to support data integration. As with work with dif-
ferent vocabularies and models, a large part of the effort is about harmoniz-
ing things to make products useful. And for that we need interdisciplinary
teams (Berg-Cross, 2015).

Useful Practices and Some Guiding Principles

Based on varieties of experiences, some improvements in ontologi-
cal engineering may be suggested to incrementally advance and harmonize
semantic resources. The previous examples suggest some ideas, starting
with the need to provide unique, persistent and consistent entity identifiers
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that are computer processable, but the identifiers should also be relatable
and sensible to humans. At a minimum, following FAIR principles, this is
needed for findability, but is supplemented when semantic resources are
registered or indexed in a searchable resource such as in EnvO. The need
for data to be described with rich metadata is also featured in FAIR princi-
ples. An incremental approach fits into FAIR’s principles for developing
and publishing digital material. The use of community standard vocabular-
ies for data should follow FAIR, provide quality, harmonized definitions
and associated managed schemas. Vocabularies need to have reliable gov-
ernance and organizational commitment to FAIR principles and associated
ideas like commitment to linked data principles, stable IRI’s and associated
sensible funding. These are important, as is assessing the readiness of terms,
definitions and concepts for use as semantic resources. Incremental im-
provement efforts need to assess the quality of resources like community
accepted glossaries that may exist. Work should leverage and reuse struc-
tured data and vocabularies as much as possible. As noted in the work on
Cryosphere, progress was enabled by starting with existing vocabularies
that were already studied and had some harmonization underway.

Making domain assumptions explicit over time is an important en-
hancement as we move up the semantic spectrum. References to a founda-
tional ontology, such as done in the OBO Foundry, is an example (Smith et
al., 2007). Community efforts like the OBO Foundry represent other basic
practices and include principles that are simple, yet important, such as en-
suring a stable URI for each refined concept. This goes beyond URL mint-
ings made by individual projects. Efforts like the OBO Foundry involve a
community commitment to maintaining a place for managed concepts that
assures access in perpetuity.

Broadly, methodologies like eXD or UPON Lite represent useful
starting points for projects. The UPON Lite methodology is notable in that
it supports the rapid prototyping of trial ontologies that can be extended
more easily by enhancing the role of domain experts (using spreadsheets)
rather than the constant need for knowledge engineering experts (De Nicola,
and Missikoff, 2016). The general advice is to address one modeling issue
at a time. For KG development, a useful guideline concerns re-engineering
ontological patterns using transformation rules. These can be applied to cre-
ate a new, target ontology starting from elements of a source model
(Blomqvist, Hammar, and Presutti, 2016).
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Guidelines also exist for refactoring an ODP. Some concepts may
be defined as a hybrid or mosaic of ideas containing a mix of more funda-
mental concepts. Such marbled concepts have to be decomposed into more
rationalized component parts or subtypes since termed concepts should be
orthogonal. A guiding principle is that if overlap exists among termed con-
cepts, then there is more than one concept in play. In addition to making use
clearer, refactoring affords an opportunity to combine distinct concepts in
useful ways. The eXD method provides rules to transform an existing onto-
logical piece, say expressed in OWL DL, due to a requirement change. A
typical example relevant to KG development is when a KG is initially pop-
ulated with individual instances and then advances the organizational use of
class structures. Another form of enhancement is moving from object prop-
erties to classes (Kasri and Fouzia, 2016).

It is worth noting that ontological methods like eXD require com-
munity involvement in the form of interdisciplinary teams. A central em-
phasis is on the need for domain expertise to address the quality curation
that is needed for incremental improvements. This often starts with identi-
fying who are the interested parties needed to improve some collection of
semantic resources for some purpose. A typical driver is the need for better
data interoperability within a domain. As a bonus along the way, domain
experts may provide a seed definition that can expand into new areas of
work.

As semantic enhancements are considered, some very general con-
cepts about quality apply to semantic resources across the spectrum, includ-
ing those such as KGs that make use of many if not all parts of the semantic
spectrum. They should not be traded off without thought as we move from
one level to another, or as part of efforts to harmonize resources across the
spectrum. These concepts are similar to criteria that judge the quality of
ontologies and follow from Gruber’s (1995) original list including Clarity,
Coherence, Extendibility and Minimal encoding. Gómez-Pérez (1996) sug-
gested related criteria that overlap the first three of Gruber’s criteria;
namely, Consistency and Conciseness (i.e., definitions need clarity and
should minimize ambiguity by being expressive in few words). Gómez-
Pérez adds that definitions should be complete is some sense and that over
time any revisions should capture some core essence of what is known about
the real world as part of some finite structure and system. Gómez-Pérez also
adds the idea of Definitional Sensitiveness; that is, a definition’s core should
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be stable in the face of small changes. Some of these qualities are expanded
as follows:

a. Clarity: the concepts in a semantic resource should be defined in a
formal way that communicates the intended meaning of defined
terms as understood by a domain community. Definitions should be
brief, with objective necessary and sufficient conditions. If the scope
of a defined concept is changing and becoming more formal, that
should be documented.

b. Coherence: concept definitions, especially the formal aspects,
should stand up to rational analysis. For example logical inferences
should make sense and be consistent with the overall domain
understanding. It follows the advice – “first do no damage.”
Wikipedia concept entries have often been the start of a knowledge
base. However, based on experience, we know there are consistency
questions about these meanings sinceWikipedia represents a loosely
governed heap of diverse material. While Wikipedia remains a
source to start with, it is often better to consider controlled sources
that can supplemented by assembling definitions and actually
analyzing terms from relevant domain vocabularies which are likely
to be stable. This was the case with work on a Cryo vocabulary. A
concept does not stand alone, and its definitions and inferences
should make sense in light of the definitions and inferences of
related concepts. Therefore, methods are needed to reach agreement
on conceptualization across concepts. A starting point can be an
agreement that something like an ontology or ODPcan be assembled
by anchoring their concepts to a local, harmonized glossary of terms
and a set of agreed upon relationships between them. From this one
may consider cross-domain integrating or bridging concepts that
meaningfully relate concepts between domains as needed for a
wide-spanning KG.

c. Extensibility/Scalability: a suite of semantic resources such as a
glossary, KG, ODP or ontology should design in and anticipate
expansions and extensions to address likely, new requirements or as
semantic resources are added. This is a natural part of a change
management process. For semantic enhancements this includes
consideration of how to scope a domain, what parts of definitions
can be axiomatized and, where possible, use formulations in existing
quality ODPs and ontologies for this. Any improved knowledge
should are captured in competency questions as laid out in the eXD
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method. The previously mentioned SOSA pattern is built on an
extendable vocabulary that can be combined with other related
ontologies or ODPs, such as SSN, to provide a more rigorous
axiomatization where needed. Extensibility is promoted by use of
such ODPs as a small conceptual foundation with some general
concepts that are useful. Examples include “physical-object”,
“event”, “process” and “situation”. These can be used as foundations
as a step to a systematic foundry and can be adapted over time to
work across a range of certain tasks. A good example of a useful
pattern is the formalization of Winston's Taxonomy Of Part-Whole
Relations for use in ontologies (Shimizu, Hitzler, and Paul, 2018).
A guiding quality related to extensibility that is seen in foundational
ODPs is that of “minimal semantic commitment” which states that
a semantic resource should require the minimal ontological
commitment in order adequately to support any anticipated
knowledge sharing activities.

d. Coverage: Coverage asks the scoping or completeness question,
“Does the graph have all the required information?” Obviously this
is a matter of degree, since even lightly formalized knowledge can’t
practically provide full coverage of a domain or a suite of domains.
As with the work to harmonize Cryo definitions, some scope must
be considered. Furthermore, even as extensions and refinements are
applied, we know that a KG or an ontology is an approximation and
not fully correct. This reflects the reality of a trade-off needed
between coverage and correctness. Where and how this trade off
occurs is likely to be different in each KG (Paulheim, Heiko. 2017).

On a more detailed, lower level, there are good semantic resource
management practices to consider such as:

a. Tracking new concepts added into a KG or ontology, and
documenting these incremental changes

b. Versioning concept relationships so that interested parties can
explore how they have changed over time

c. The need for Memoranda of Understanding (MOU). As with FAIR,
explicit group agreement on meaning and commitment to a core
family of defined terms that are central to much work. On a practical
level, some between group MOUs on this may be helpful.
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d. Nascent technologies exist to help control the quality of semantic
enticements, especially to ontologies. These include tools to help
with alignment between and among semantic resources such as
ROBOT (Jackson et al.. 2019) which is a generic command-line tool
using a Java library. ROBOT performs common ontology and KG
supporting chainable tasks including: computing differences
between OWL ontology versions, merging, extracting OWL
modules, reasoning, and some support for “explanations”. A
ROBOT template has been adapted to help align SWEET and EnvO
as part of the Cryosphere harmonization previously described.
There are also tool suites for broad work on semantic resources. For
example, the suite of web-based tools that are part of Ontoanimal
(e.g., Ontofoxp for reuse of terms, Ontorat to edit existing terms,
and Ontobeep for ontology comparisons) support iterative,
extensible ontology development (He et al., 2018). Boomer
(Mungall et al., 2016.) is another helpful semantic tool. It uses a
combined logical and probabilistic approach to translate mappings
into logical axioms for merging ontologies. Tools and practices for
pattern-based modular ontology engineering have also been
developed (Shimizu, Hammar, and Hitzler, 2020). These reflect a
portion of the leveraging and promoting of sociotechnical practices
as part of a strategy enabling incremental semantics. Light, rapid
methodologies, like the UPON lite ontology approach (De Nicola,
and Missikoff.2016) can help make the ontologies more available
for KG structuring and consider a range of semantic resources
growing from domain terminologies to domain glossaries,
taxonomies and simple axiomatized relations.

Conclusions

Knowledge graphs employ a wide range of semantic resources, and
bringing them together with rich semantics remains a challenge. But as we
have seen, there are now good practices and active research areas using
incremental semantic improvements to support this rapidly expanding space
of KGs. These range from very focused enhancements to representation of
a concept to alignment as part of a community schema or agreed upon
domain conceptualization or as part of a larger process to harmonize related
but disparate domain vocabularies and assimilate these into extant
ontologies. We can expect more systematic development to bring various
parts of incremental methods together. These could be evidenced in



54

Washington Academy of Sciences

improvements targeted to ontological engineering methods for alignment
and harmonization. As an example, we can expect to see how to use existing
semantic relations found in quality ontologies like EnvO to help improve
formal definitions from glossary sources. In turn harmonized glossary
definitions provide a rich source of material for assimilation into ontologies
and for ODP formation. The result over time will be to help semantically
unify richly interconnected heterogeneous data using community adopted
and agreed upon methods.

Among the targets for continued research is the use of NLP and ML-
based extraction from definitions as seeds for ontology improvement and
development of better ML automation. Applying ML to build lightweight
ontologies is still exploratory, but promising (Wong, 2009) and there still
are challenge of learning non-taxonomic relations needed for ontologies
from text. But ML is starting to support tasks such as term extraction,
conceptualization and enrichment using reverse engineering, schema
mapping, data mining, and ML. Enhanced semantics may also follow from
work on ontological subsumption, mapping and ontology matching and
handling similarity and analogy models, as well as bottom-up semantics
from ML approaches and their symbolic ontology models.

Hopefully, technical and user centered methodological
improvements will lead to more community input and involvement.
Community involvement is necessary to guide the development and
refinement of any semantic resource, including KGs. A core group may
offer starting points and facilitate development, but the conceptualization of
a domain along with its vocabulary belongs to the community of domain
and interdisciplinary experts working with knowledge engineers. This is
needed to show how extracted concepts can be grouped, related, and
subdivided according to their human-understood semantics in context.

Future extensions to look forward to as part of revised and agreed
upon methods include those needed to harmonize and axiomatize entity
definitions and extensions using the best ontological engineering practices.
But it is likely that we will rely on human agreements for a long time, using
devices and helpful artifacts such as community schemas and consistent
patterns for resource alignment.
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